Name:

Math 138 – Midterm

October 22, 2025

Instructions:

- You have 2 hours to complete this exam.
- No external resources are allowed.
- Do not hesitate to ask for clarification on exam questions.

Math	138 -	- Midterm

Name:

Question 1. (15 pts)

Spot the error in the following proof, and explain why it is wrong.

Proposition. Every horse is the same color.

Proof. We prove by induction that every collection S of n horses has the property that all horses in S have the same color, which clearly implies the proposition. When n=1 this is trivially true as S only contains one horse. Suppose the claim is true for S of size n, and let T be a set of horses of size n+1. Choose any horse h in T, and consider the set $T-\{h\}$. This is a set of n horses, so by the induction hypothesis all horses in $T-\{h\}$ have the same color. Let h' be a different horse in T and consider $T-\{h'\}$. Again by induction all horses in $T-\{h'\}$ have the same color. Let h'' be any horse different than h and h'. Then, as both h' and h'' belong to $T-\{h\}$ they have the same color, and as both h and h'' both belong to $T-\{h'\}$ they both have the same color. So, h, h', and h'' all have the same color. As h, h', and h'' were arbitrary we deduce that all horses in T have the same color as desired.

Solution: The issue comes in the lack of sufficient base cases. Namely, the base case when n=1 is correct, and the argument for the inductive hypothesis is argued correctly, but only assuming that there are 3 distinct horses h, h', and h''. Because of this, one needs base cases for all n < 3 and so, in particular, also for n = 2. But, this base case fails as one can have two horses of a different color.

- (5 pts) Coherence of explanation.
- (5 pts) Observing that the issue is in base cases.
- (5 pts) Explaining what the precise issue is.

Question 2. (15 pts)

Prove that for all $n \ge 0$, the equality

$$F_0 + F_1 + F_2 + \dots + F_n = F_{n+2} - 1$$

Solution: We proceed by induction.

Base case: When n = 0 this equality reduces to $F_0 = F_2 - 1$, which is true as $F_0 = 0$ and $F_2 = 1$.

Inductive hypothesis: Let us assume the equality holds true for some $n \ge 0$. Then, we wish to prove the claim for n + 1 or, in other words that

$$F_0 + F_1 + \dots + F_n + F_{n+1} = F_{(n+1)+2} - 1.$$
 (1)

But, the left-hand side can be rewritten as

$$(F_0 + F_1 + \cdots + F_n) + F_{n+1},$$

and by the inductive hypothesis this bracketed expression is equal to $F_{n+2} - 1$. So then, we can rewrite this as

$$F_{n+2} - 1 + F_{n+1}.$$

But, by definition, $F_{n+3} = F_{n+2} + F_{n+1}$, and so we can further rewrite this as

$$F_{n+3} - 1$$
,

which is the right-hand side of (1), as desired.

- (5 pts) Coherence in proof writing.
- (2 pts) Giving a correct proof strategy (e.g., induction).
- (2 pts) Correctly verifying the base case.
- (6 pts) Correctly verifying the induction hypothesis.

Math	138 _	Midterm
\mathbf{W}	-000	тинатенн

Name:

Question 3. (20 pts)

Suppose that $p \neq q$ are primes. Show that $\sqrt[3]{pq^2}$ is not rational.

Solution: Write $x = pq^2$, a rational number. Then, from class we know that $\sqrt[3]{x}$ belongs to \mathbb{Q} if and only if

- 1. sgn(x) has a cuberoot in \mathbb{Q} ,
- 2. for all primes ℓ one has that $v_{\ell}(x)$ is divisible by 3.

That said, as p and q are distinct primes, we see that $v_p(x) = v_p(pq^2) = 1$ which is not divisible by 3. So, $\sqrt[3]{x} \notin \mathbb{Q}$ as desired.

- (7 pts) Coherence in proof writing.
- (3 pts) Giving a correct strategy (e.g., using p-adic valuation or "Assume $\sqrt[3]{pq^2} = \frac{a}{b} \dots$ "
- (3 pts) Using the Fundamemental Theorem of Algebra.
- (7 pts) Sucessfully executing idea.

Question 4. 20 pts

Let A and B be subsets of a set S. Prove that

$$(A \cup B) \triangle (A \cap B) = A \triangle B.$$

Solution: Assume first that x belongs to $(A \cup B) \triangle (A \cap B)$. Then, by definition, either

- 1. $x \in A \cup B$ and $x \notin A \cap B$, or
- 2. $x \in A \cap B$ and $x \notin A \cup B$.

In the first case, we see that either $x \in A$ or $x \in B$. If $x \in A$, then as $x \notin A \cap B$ we see that $x \notin B$, and so $x \in A - B \subseteq A \triangle B$. If in the first case $x \in B$, a symmetric argument shows $x \in B - A \subseteq A \triangle B$. But, note that the second case cannot happen as $A \cap B \subseteq A \cup B$. So, in any case we have shown $(A \cup B) \triangle (A \cap B) \subseteq A \triangle B$.

Conversely, suppose that $x \in A \triangle B$. Then, either

- 1. $x \in A$ and $x \notin B$,
- 2. $x \in B$ and $x \notin A$.

In the first case as $x \in A$ we have $x \in A \cup B$ and as $x \notin B$ we have $x \notin A \cap B$. Thus, $x \in (A \cup B) \triangle (A \cap B)$. Case two is argued symmetrically, and so in any case we have $A \triangle B \subseteq (A \cup B) \triangle (A \cap B)$ as desired.

- (6 pts) Coherence in proof writing.
- (4 pts) Proof strategy.
- (5 pts) Left-hand side contained in right-hand side shown directly.
- (5 pts) Right-hand side contained in left-hand side shown directly.

Question 5. (30 pts)

1. **(20 pts)**

Prove by induction that the number of subsets of $\{1, \ldots, n\}$ is 2^n . (Hint: prove that if S is the collection of subsets of $\{1, \ldots, n+1\}$ containing n+1, and T is the collection not containing n+1, then S and T are in 1-to-1 correspondence.)

2. (10 pts)

Use 1. to show that

$$2^n = \sum_{k=0}^n \binom{n}{k}.$$

(Note: you can use the claim from 1. to solve 2. even if you didn't solve 1.)

Solution:

1. We proceed by induction.

<u>Base case:</u> When n = 0 we have that $\{1, \ldots, n\}$ is empty, and there is precisely $1 = 2^0$ subsets of \varnothing : namely \varnothing itself.

Inductive hypothesis: Assume the claim is true for $n \ge 0$. We show the claim is true for n+1. To see this, observe that we can decompose the collection of $\{1, \ldots, n, n+1\}$ into two disjoint subcollections S and T

- (a) S consisting of those subsets of $\{1, \ldots, n, n+1\}$ containing n+1,
- (b) T consists of those subsets of $\{1, \ldots, n, n+1\}$ not containing n+1.

Note that S has the same size as the collection of all subsets of $\{1,\ldots,n\}$: namely for a set $X\in S$ one has that $X-\{n+1\}$ is a subset of $\{1,\ldots,n\}$, and for a subset $Y\subseteq\{1,\ldots,n\}$ one has that $Y\cup\{n+1\}\in S$ —this is a 1-to-1 correspondence.

Similarly, note that T also has the same size as the collection of all subsets of $\{1, \ldots, n\}$ —in fact, it is equal to this set as an element of T is just a subset of

$${1,\ldots,n,n+1}-{n+1}={1,\ldots,n}.$$

By the inductive hypothesis we have that S and T both have size 2^n , and has the collection of all subsets of $\{1, \ldots, n, n+1\}$ has size the sum of the sizes of S and T, we deduce there are $2^n + 2^n = 2^{n+1}$ subsets of $\{1, \ldots, n, n+1\}$ as desired.

2. By 1. we know that the left-hand side of this equality is the size of the collection of all subsets of $\{1, \ldots, n\}$. But, this is also true of the right-hand side. Indeed, one may count the number of subsets of $\{1, \ldots, n\}$ by counting the number of subsets having k elements for $k = 0, \ldots, n$. But, by definition, the number of subsets having k elements in $\binom{n}{k}$. As summing over k gives the right-hand side of our desired equality, we are done.

Name: _____

- 1. (7 pts) Coherence in proof writing.
 - (2 pts) Setting up induction correctly.
 - (3 pts) Precise argument for base case.
 - (8 pts) Correct execution of inductive step.
- 2. (3 pts) Coherence in proof writing.
 - (3 pts) Correct strategy for how to use 1. to prove equality.
 - (3 pts) Correct execution of strategy.